3.2.18 \(\int \frac {3-x^2}{\sqrt {3-3 x^2-x^4}} \, dx\) [118]

3.2.18.1 Optimal result
3.2.18.2 Mathematica [C] (verified)
3.2.18.3 Rubi [A] (warning: unable to verify)
3.2.18.4 Maple [B] (verified)
3.2.18.5 Fricas [A] (verification not implemented)
3.2.18.6 Sympy [F]
3.2.18.7 Maxima [F]
3.2.18.8 Giac [F]
3.2.18.9 Mupad [F(-1)]

3.2.18.1 Optimal result

Integrand size = 24, antiderivative size = 92 \[ \int \frac {3-x^2}{\sqrt {3-3 x^2-x^4}} \, dx=-\sqrt {\frac {1}{2} \left (3+\sqrt {21}\right )} E\left (\arcsin \left (\sqrt {\frac {2}{-3+\sqrt {21}}} x\right )|\frac {1}{2} \left (-5+\sqrt {21}\right )\right )+\sqrt {3+2 \sqrt {21}} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {2}{-3+\sqrt {21}}} x\right ),\frac {1}{2} \left (-5+\sqrt {21}\right )\right ) \]

output
-1/2*EllipticE(x*2^(1/2)/(-3+21^(1/2))^(1/2),1/2*I*7^(1/2)-1/2*I*3^(1/2))* 
(6+2*21^(1/2))^(1/2)+EllipticF(x*2^(1/2)/(-3+21^(1/2))^(1/2),1/2*I*7^(1/2) 
-1/2*I*3^(1/2))*(3+2*21^(1/2))^(1/2)
 
3.2.18.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 10.15 (sec) , antiderivative size = 107, normalized size of antiderivative = 1.16 \[ \int \frac {3-x^2}{\sqrt {3-3 x^2-x^4}} \, dx=-\frac {i \left (\left (-3+\sqrt {21}\right ) E\left (i \text {arcsinh}\left (\sqrt {\frac {2}{3+\sqrt {21}}} x\right )|-\frac {5}{2}-\frac {\sqrt {21}}{2}\right )-\left (-9+\sqrt {21}\right ) \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {\frac {2}{3+\sqrt {21}}} x\right ),-\frac {5}{2}-\frac {\sqrt {21}}{2}\right )\right )}{\sqrt {2 \left (-3+\sqrt {21}\right )}} \]

input
Integrate[(3 - x^2)/Sqrt[3 - 3*x^2 - x^4],x]
 
output
((-I)*((-3 + Sqrt[21])*EllipticE[I*ArcSinh[Sqrt[2/(3 + Sqrt[21])]*x], -5/2 
 - Sqrt[21]/2] - (-9 + Sqrt[21])*EllipticF[I*ArcSinh[Sqrt[2/(3 + Sqrt[21]) 
]*x], -5/2 - Sqrt[21]/2]))/Sqrt[2*(-3 + Sqrt[21])]
 
3.2.18.3 Rubi [A] (warning: unable to verify)

Time = 0.30 (sec) , antiderivative size = 106, normalized size of antiderivative = 1.15, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {1494, 399, 321, 327}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {3-x^2}{\sqrt {-x^4-3 x^2+3}} \, dx\)

\(\Big \downarrow \) 1494

\(\displaystyle 2 \int \frac {3-x^2}{\sqrt {-2 x^2+\sqrt {21}-3} \sqrt {2 x^2+\sqrt {21}+3}}dx\)

\(\Big \downarrow \) 399

\(\displaystyle 2 \left (\frac {1}{2} \left (9+\sqrt {21}\right ) \int \frac {1}{\sqrt {-2 x^2+\sqrt {21}-3} \sqrt {2 x^2+\sqrt {21}+3}}dx-\frac {1}{2} \int \frac {\sqrt {2 x^2+\sqrt {21}+3}}{\sqrt {-2 x^2+\sqrt {21}-3}}dx\right )\)

\(\Big \downarrow \) 321

\(\displaystyle 2 \left (\frac {\left (9+\sqrt {21}\right ) \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {2}{-3+\sqrt {21}}} x\right ),\frac {1}{2} \left (-5+\sqrt {21}\right )\right )}{2 \sqrt {2 \left (3+\sqrt {21}\right )}}-\frac {1}{2} \int \frac {\sqrt {2 x^2+\sqrt {21}+3}}{\sqrt {-2 x^2+\sqrt {21}-3}}dx\right )\)

\(\Big \downarrow \) 327

\(\displaystyle 2 \left (\frac {\left (9+\sqrt {21}\right ) \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {2}{-3+\sqrt {21}}} x\right ),\frac {1}{2} \left (-5+\sqrt {21}\right )\right )}{2 \sqrt {2 \left (3+\sqrt {21}\right )}}-\frac {1}{2} \sqrt {\frac {1}{2} \left (3+\sqrt {21}\right )} E\left (\arcsin \left (\sqrt {\frac {2}{-3+\sqrt {21}}} x\right )|\frac {1}{2} \left (-5+\sqrt {21}\right )\right )\right )\)

input
Int[(3 - x^2)/Sqrt[3 - 3*x^2 - x^4],x]
 
output
2*(-1/2*(Sqrt[(3 + Sqrt[21])/2]*EllipticE[ArcSin[Sqrt[2/(-3 + Sqrt[21])]*x 
], (-5 + Sqrt[21])/2]) + ((9 + Sqrt[21])*EllipticF[ArcSin[Sqrt[2/(-3 + Sqr 
t[21])]*x], (-5 + Sqrt[21])/2])/(2*Sqrt[2*(3 + Sqrt[21])]))
 

3.2.18.3.1 Defintions of rubi rules used

rule 321
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c 
/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 
0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])
 

rule 327
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*EllipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d) 
)], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0]
 

rule 399
Int[((e_) + (f_.)*(x_)^2)/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_) 
^2]), x_Symbol] :> Simp[f/b   Int[Sqrt[a + b*x^2]/Sqrt[c + d*x^2], x], x] + 
 Simp[(b*e - a*f)/b   Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; Fr 
eeQ[{a, b, c, d, e, f}, x] &&  !((PosQ[b/a] && PosQ[d/c]) || (NegQ[b/a] && 
(PosQ[d/c] || (GtQ[a, 0] && ( !GtQ[c, 0] || SimplerSqrtQ[-b/a, -d/c])))))
 

rule 1494
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[2*Sqrt[-c]   Int[(d + e*x^2)/(Sqr 
t[b + q + 2*c*x^2]*Sqrt[-b + q - 2*c*x^2]), x], x]] /; FreeQ[{a, b, c, d, e 
}, x] && GtQ[b^2 - 4*a*c, 0] && LtQ[c, 0]
 
3.2.18.4 Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 203 vs. \(2 (74 ) = 148\).

Time = 2.05 (sec) , antiderivative size = 204, normalized size of antiderivative = 2.22

method result size
default \(\frac {18 \sqrt {1-\left (\frac {1}{2}+\frac {\sqrt {21}}{6}\right ) x^{2}}\, \sqrt {1-\left (\frac {1}{2}-\frac {\sqrt {21}}{6}\right ) x^{2}}\, F\left (\frac {x \sqrt {18+6 \sqrt {21}}}{6}, \frac {i \sqrt {7}}{2}-\frac {i \sqrt {3}}{2}\right )}{\sqrt {18+6 \sqrt {21}}\, \sqrt {-x^{4}-3 x^{2}+3}}+\frac {36 \sqrt {1-\left (\frac {1}{2}+\frac {\sqrt {21}}{6}\right ) x^{2}}\, \sqrt {1-\left (\frac {1}{2}-\frac {\sqrt {21}}{6}\right ) x^{2}}\, \left (F\left (\frac {x \sqrt {18+6 \sqrt {21}}}{6}, \frac {i \sqrt {7}}{2}-\frac {i \sqrt {3}}{2}\right )-E\left (\frac {x \sqrt {18+6 \sqrt {21}}}{6}, \frac {i \sqrt {7}}{2}-\frac {i \sqrt {3}}{2}\right )\right )}{\sqrt {18+6 \sqrt {21}}\, \sqrt {-x^{4}-3 x^{2}+3}\, \left (-3+\sqrt {21}\right )}\) \(204\)
elliptic \(\frac {18 \sqrt {1-\left (\frac {1}{2}+\frac {\sqrt {21}}{6}\right ) x^{2}}\, \sqrt {1-\left (\frac {1}{2}-\frac {\sqrt {21}}{6}\right ) x^{2}}\, F\left (\frac {x \sqrt {18+6 \sqrt {21}}}{6}, \frac {i \sqrt {7}}{2}-\frac {i \sqrt {3}}{2}\right )}{\sqrt {18+6 \sqrt {21}}\, \sqrt {-x^{4}-3 x^{2}+3}}+\frac {36 \sqrt {1-\left (\frac {1}{2}+\frac {\sqrt {21}}{6}\right ) x^{2}}\, \sqrt {1-\left (\frac {1}{2}-\frac {\sqrt {21}}{6}\right ) x^{2}}\, \left (F\left (\frac {x \sqrt {18+6 \sqrt {21}}}{6}, \frac {i \sqrt {7}}{2}-\frac {i \sqrt {3}}{2}\right )-E\left (\frac {x \sqrt {18+6 \sqrt {21}}}{6}, \frac {i \sqrt {7}}{2}-\frac {i \sqrt {3}}{2}\right )\right )}{\sqrt {18+6 \sqrt {21}}\, \sqrt {-x^{4}-3 x^{2}+3}\, \left (-3+\sqrt {21}\right )}\) \(204\)

input
int((-x^2+3)/(-x^4-3*x^2+3)^(1/2),x,method=_RETURNVERBOSE)
 
output
18/(18+6*21^(1/2))^(1/2)*(1-(1/2+1/6*21^(1/2))*x^2)^(1/2)*(1-(1/2-1/6*21^( 
1/2))*x^2)^(1/2)/(-x^4-3*x^2+3)^(1/2)*EllipticF(1/6*x*(18+6*21^(1/2))^(1/2 
),1/2*I*7^(1/2)-1/2*I*3^(1/2))+36/(18+6*21^(1/2))^(1/2)*(1-(1/2+1/6*21^(1/ 
2))*x^2)^(1/2)*(1-(1/2-1/6*21^(1/2))*x^2)^(1/2)/(-x^4-3*x^2+3)^(1/2)/(-3+2 
1^(1/2))*(EllipticF(1/6*x*(18+6*21^(1/2))^(1/2),1/2*I*7^(1/2)-1/2*I*3^(1/2 
))-EllipticE(1/6*x*(18+6*21^(1/2))^(1/2),1/2*I*7^(1/2)-1/2*I*3^(1/2)))
 
3.2.18.5 Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 107, normalized size of antiderivative = 1.16 \[ \int \frac {3-x^2}{\sqrt {3-3 x^2-x^4}} \, dx=\frac {6 i \, \sqrt {2} x \sqrt {\sqrt {21} - 3} F(\arcsin \left (\frac {\sqrt {2} \sqrt {\sqrt {21} - 3}}{2 \, x}\right )\,|\,-\frac {1}{2} \, \sqrt {21} - \frac {5}{2}) + {\left (i \, \sqrt {21} \sqrt {2} x - 3 i \, \sqrt {2} x\right )} \sqrt {\sqrt {21} - 3} E(\arcsin \left (\frac {\sqrt {2} \sqrt {\sqrt {21} - 3}}{2 \, x}\right )\,|\,-\frac {1}{2} \, \sqrt {21} - \frac {5}{2}) + 4 \, \sqrt {-x^{4} - 3 \, x^{2} + 3}}{4 \, x} \]

input
integrate((-x^2+3)/(-x^4-3*x^2+3)^(1/2),x, algorithm="fricas")
 
output
1/4*(6*I*sqrt(2)*x*sqrt(sqrt(21) - 3)*elliptic_f(arcsin(1/2*sqrt(2)*sqrt(s 
qrt(21) - 3)/x), -1/2*sqrt(21) - 5/2) + (I*sqrt(21)*sqrt(2)*x - 3*I*sqrt(2 
)*x)*sqrt(sqrt(21) - 3)*elliptic_e(arcsin(1/2*sqrt(2)*sqrt(sqrt(21) - 3)/x 
), -1/2*sqrt(21) - 5/2) + 4*sqrt(-x^4 - 3*x^2 + 3))/x
 
3.2.18.6 Sympy [F]

\[ \int \frac {3-x^2}{\sqrt {3-3 x^2-x^4}} \, dx=- \int \frac {x^{2}}{\sqrt {- x^{4} - 3 x^{2} + 3}}\, dx - \int \left (- \frac {3}{\sqrt {- x^{4} - 3 x^{2} + 3}}\right )\, dx \]

input
integrate((-x**2+3)/(-x**4-3*x**2+3)**(1/2),x)
 
output
-Integral(x**2/sqrt(-x**4 - 3*x**2 + 3), x) - Integral(-3/sqrt(-x**4 - 3*x 
**2 + 3), x)
 
3.2.18.7 Maxima [F]

\[ \int \frac {3-x^2}{\sqrt {3-3 x^2-x^4}} \, dx=\int { -\frac {x^{2} - 3}{\sqrt {-x^{4} - 3 \, x^{2} + 3}} \,d x } \]

input
integrate((-x^2+3)/(-x^4-3*x^2+3)^(1/2),x, algorithm="maxima")
 
output
-integrate((x^2 - 3)/sqrt(-x^4 - 3*x^2 + 3), x)
 
3.2.18.8 Giac [F]

\[ \int \frac {3-x^2}{\sqrt {3-3 x^2-x^4}} \, dx=\int { -\frac {x^{2} - 3}{\sqrt {-x^{4} - 3 \, x^{2} + 3}} \,d x } \]

input
integrate((-x^2+3)/(-x^4-3*x^2+3)^(1/2),x, algorithm="giac")
 
output
integrate(-(x^2 - 3)/sqrt(-x^4 - 3*x^2 + 3), x)
 
3.2.18.9 Mupad [F(-1)]

Timed out. \[ \int \frac {3-x^2}{\sqrt {3-3 x^2-x^4}} \, dx=\int -\frac {x^2-3}{\sqrt {-x^4-3\,x^2+3}} \,d x \]

input
int(-(x^2 - 3)/(3 - x^4 - 3*x^2)^(1/2),x)
 
output
int(-(x^2 - 3)/(3 - x^4 - 3*x^2)^(1/2), x)